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The algorithm [Bethanis, Tzamalis, Hountas & Tsoucaris (2002). Acta Cryst.

A58, 265–269] which reformulates the quantum-mechanical problem of solving

a Schrödinger (S) equation in a crystallographic context has been upgraded and

tested for many aspects of convergence. The upgraded algorithm in reciprocal

space aims at determining a wavefunction �H such that (a) �H fulfils the S

equation within certain precision and (b) �H minimizes by least squares the

differences between the calculated structure factors from the wavefunction and

the observed ones. Calculations have been made with three molecules (11, 41

and 110 non-H atoms in the asymmetric unit) for different numbers of initially

given phases. Three main questions have been addressed: (I) Does the iterative

calculation of the wavefunction converge? (II) Do the calculated wavefunctions

converge to a unique set of �H values independent of the initial random set of

�H? (III) Is the calculated �H set a good approximation of a wavefunction able

to produce within certain errors the correct values of the phases of the structure

factors? Concerning questions (I) and (II), our results give a strong hint about

fast convergence to a unique wavefunction independent of the arbitrary starting

wavefunction. This is an essential prerequisite for practical applications. For

question (III) in the case closer to the ab initio situation, the final mean phase

error, respectively, for the three structures is 3, 26 and 28�. The combination of

(a) and (b) in the upgraded algorithm has been proved crucial especially for the

results concerning the larger structures.

1. Introduction: one-electron molecule and direct
methods

X-ray diffraction diagrams allow the moduli of the structure

factors EH of the crystal structures to be obtained. The

determination of the phases of the structure factors by using

the observed moduli (solution of the phase problem) can be

achieved by direct methods (DM) (Hauptman & Karle, 1953).

The structure factors are then introduced into the calculation

of Fourier series yielding the electron-density map

�0
ðrÞ ¼

P
H

EH expð�2�iH � rÞ: ð1Þ

Localization of maxima on this electron-density map leads to

the determination of the atomic positions in the unit cell

according to the following sequence:

observed moduli of EH ! direct methods (DM)

! calculated phases of EH ! electron-density map

! positions of maxima ! atomic coordinates:

At this point, one could wonder how this electron density

[equation (1)] is linked to the quantum-mechanics (QM)

wavefunction. We have shown (Bethanis et al., 2002) that this

link can be exemplified through an extremely simplified ‘no

inter-electronic interaction’ model where all electrons of a

molecule are stripped off except one. The resulting multi-atom

ion recalls the well known example of H2
+. Within this one-

electron model, a fundamental objective of QM is to deter-

mine, by means of the Schrödinger equation (abbreviated as ‘S

equation’), the wavefunction  (r), r 2 <3, and finally an

electron density for the one-electron model given the coordi-

nates of the nuclei.

�ðrÞ ¼ j ðrÞj2: ð2Þ

Clearly, this electron density is different from the theoretical

electron density obtained from the multi-electron wavefunc-

tion. We consider thus in this work a kind of ‘inverse’ use of

the S equation in the sense that we wish now to determine the

atomic coordinates of a crystal structure by means of the S

equation given the X-ray diffraction data |E|obs. A similar



‘inverse’ formulation is used by Spence (1998) for the case of

electron scattering from a periodic potential described by the

S equation.

Summarizing, in the above sequence, the mathematical

theory of DM is replaced by an algorithm entirely based upon

the S equation. However, the ‘philosophy’ of the application

of DM accumulated in the past decades is very useful in the

practical implementation of our S-equation-based algorithm.

We are thus led to reformulate the one-electron S equation

in a way adapted to the crystallographic information, i.e. the

knowledge of the structure factors. The key for the reformu-

lation resides in the use of reciprocal space and the subsequent

replacement of the whole set of the atomic coordinates by the

infinite set of structure factors. These two sets of data are

clearly mathematically equivalent by Fourier transformation

(hereafter FT). However, the behaviour of the S equation in

the case of a limited number of structure factors is not known

to our knowledge. The problem is even more difficult in the

case where only the moduli of a limited set are known (ab

initio problem in the crystallographic sense).

The algorithm devised in the paper of Bethanis et al. (2002)

has shown the pertinence of this approach to the phase

problem and the feasibility of the process in a particular case.

However, further developments are necessary for a routine

application in crystal structure determination and phase

extension. A prerequisite for further advancements and

standard use of the algorithm is the examination of the

convergence of the S-equation algorithm in different cases and

for different parts of the proposed algorithm.

It is to be noted that the idea of combining QM methods

with experimental X-ray diffraction data has been used for

extracting experimental wavefunctions (Jayatilaka & Grim-

wood, 2001). Karle et al. (1998) have also used the crystal-

lographic information to enhance quantum-mechanical

calculations. Conversely, in the present work we wish to

borrow the QM mathematical machinery as an alternative to

the DM theories; clearly this is a major change in approaching

the phase problem.

2. The one-electron molecule and the Schrödinger
equation in direct and reciprocal space

First, the S equation in the position space is rearranged as

shown below in equation (3). The variable r 2 <3 denotes the

position vector of the electron. The Hamiltonian operator

ĤH ¼ �ð�=2Þ þ VðrÞ is composed of the Laplacian operator

��=2 (kinetic term) and the potential operator V(r) acting by

ordinary multiplication. We then take the FT of both members

of equation (3) and we obtain the S equation in reciprocal

space (called momentum space in physics), equation (4). We

adopt the usual crystallographic notation H for a vector of

reciprocal space, as well as the abbreviation ‘reciprocal

wavefunction’ �(H) and ‘reciprocal potential’ W(H):

 ðrÞ  !
FT

�ðHÞ VðrÞ  !
FT

WðHÞ:

In this FT, the Laplacian operator becomes ordinary multi-

plication by 2�2H2; the ordinary multiplication V(r) (r) is

transformed into the convolution of W(H)��(H) [equation

(4)].

�ð�=2Þ � "½ � ðrÞ ¼ �VðrÞ ðrÞx??
FT??y

ð2�2H2 � "Þ�ðHÞ ¼ �WðHÞ ��ðHÞ

ð3Þ

ð4Þ

It is noted that the reciprocal wavefunction �(H) has a

fundamental physical meaning in QM: the amplitude squared

of the wavefunction, |�(H)|2, is the probability density of the

electron’s momentum. We will refer to the S equation without

distinguishing between equation (3) in direct space and

equation (4) in reciprocal space.

Within the context of the one-electron-molecule model of

the present paper, the potential operator contains only the

nucleus–electron attractive Coulomb term:

VðrÞ ¼ �
X

j

Zj

jr� rjj
 !

FT
WðHÞ ¼ �

s2

�

EðHÞ

H2
; ð5Þ

where rj denotes the nuclei positions and s2 will be defined

below [see equation (6)]. This equation shows that in the FT

the knowledge of the set of the atomic coordinates rj is

equivalent to an infinite set of structure factors E(H). The

crucial relation (5) makes possible the connection between the

one-electron S equation and the crystallographic problem: the

reciprocal potential W(H) is equal, apart from a positive

constant, to �E(H)/H2, where E(H) is the normalized struc-

ture factor whose theoretical value is defined in crystal-

lography by equation (6) for a point-charge scattering model

(Tsoucaris et al., 2000, 2003):

EðHÞ ¼
1

s2

X
j

Zj expð2�iH � rjÞ; s2 ¼

�X
j

Z2
j

�1=2

; ð6Þ

where Zj is the atomic number of the jth atom in the unit cell.

For a periodic crystalline structure, the convolution integral

in equation (4) is replaced by a discrete sum. Thus, the S

equation (4) in momentum space is written as equation (7)

which represents a precise relation between the crystal-

lographic structure factors E and the reciprocal wavefunction

�:

ð2�2H2 � "Þ�H ¼
s2

�

X
K

EK�H�K

K2
: ð7Þ

In the crystallographic problem, the theoretical values of the

moduli of EK are approximated by the experimental structure-

factor magnitudes |EK|obs obtained by a standard calculation

from the diffraction pattern (Giacovazzo, 2006). We write

then:

ð2�2H2 � "Þ�H �
s2

�

X
K

jEKj
obs expði’KÞ�H�K

K2
: ð8Þ
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We can now express the problem of crystal structure

determination within a quantum-mechanical context as:

determine the reciprocal wavefunction �H which satisfies

the S equation (8), where the observed moduli of the

structure factors are introduced in the expression EK ’

jEKj
obs expði’calc

K Þ. The determination of the phases ’calc
K is the

object of the iterative procedure shown in x3.

The energy " is a negative quantity for bound states so that

the coefficient (2�2H2
� ") in the left parts of equations (7)

and (8) is always positive. This fact allows us to calculate the

values of �H for all H by dividing the right-hand member of

equation (8) with this positive coefficient. We thus obtain

equation (9) which is the base of the iterative process

described in x3:

�H ¼
1

ð2�2H2 � "Þ

s2

�

X
K

1

K2
jEobs

K j expði’KÞ�H�K: ð9Þ

It is interesting to note that, in a recent publication (Kara-

biyik, 2007), equation (8) has been reformed to include rela-

tivistic corrections based on a simplified spin-free one-

component Dirac equation. The relativistic Dirac formulation

has led to a formula differing from S equation (9) by higher

terms in the denominator ð2�2H2 � 2�2�4H4 þ 2�4�6H6 � "Þ,
where � is the fine-structure constant defined as � = 1/c.

Another fundamental relation between the reciprocal

wavefunction �K and the usual crystallographic structure

factors FK is the convolution equation corresponding to the

FT of the electron density, equation (2):

P
H

�H��H�K ¼ FK ¼ jFKj expði’KÞ  !
FT

 ðrÞ �ðrÞ ¼�ðrÞ:

ð10Þ

Thus the calculation of the reciprocal wavefunction �H leads

to structure-factor determination. The ‘quality’ of the calcu-

lated �H is evaluated by comparing the phases ’K determined

by equation (10) with the correct ones.

In turn, FK is a complex number related to the normalized

structure factor EK by a positive factor kK well known in

crystallography (Giacovazzo, 2006). We then write

EK ¼ kKFK with kK > 0: ð11Þ

Therefore, the phases of FK and EK are identical. Thus ’K

determined by equation (10) can also be recycled in equation

(8), a fact that plays an important role in the development of a

self-consistent potential calculation developed in the second

part of the algorithm described in x3.

3. Algorithm in reciprocal space

The general algorithm operating entirely in reciprocal space is

based on a self-consistent iterative method which comprises two

parts.

3.1. First part

The reciprocal wavefunction of the preceding cycle n � 1,

namely �ðn�1Þ
H�K , is introduced into the right-hand member of

equation (9a). The initially given phases ’ð0ÞK and the corre-

sponding moduli jEjobs
K are introduced in equation (9a) and

they are kept constant throughout all cycles of the algorithm:

�ðnÞH ¼
1

ð2�2H2 � "Þ

s2

�

X
K

1

K2
jEKj

obs expði’ð0ÞK Þ�
ðn�1Þ
H�K : ð9aÞ

No other E’s are used in this part. However, the calculated �
set provides values of ’K through equation (10) not only for

the reflections initially endowed with known phases but also

for the unphased part of the observed reflection set. Thus, the

initial structure-factor information is transferred and capita-

lized into the � set via the S equation. The calculated phases

will be used for the evaluation of the mean phase error (MPE)

[equation (17)] as stated in x4. Note that the first part uses the

S equation alone. This part, though it may sometimes concern

only a very small subset with initially known phases, is very

important because it produces a � set endowed with structural

information to be exploited in the second part. It is this

wavefunction �H that presides over the whole algorithm.

In the present algorithm, we consider the value of the

energy " as an adjustable semi-empirical parameter and we set

" = �Nasym (= number of atoms in the asymmetric unit).

Another possibility is to evaluate the value of " for each

iteration by

"ðnÞ ¼
X

H

2�2H2�ðn�1Þ
H �� ðn�1Þ

H

�
X

H

X
K

s2

�

E
ðn�1Þ
H�K �ðn�1Þ

K

jH� Kj2
�� ðn�1Þ

H :

The calculations carried out with these two possibilities

(recomputed energy or fixed value) do not affect significantly

the convergence of the iterative process.

3.2. Second part

If at the end of the iterative calculations of the first part the

phase information conveyed by the � set is not satisfactory

(for instance when the initially known set ’ð0ÞK is very limited),

then this � set can be the initial input into a more involved

calculation. This calculation constitutes the second part of the

algorithm which differs from the first part by two elements.

(I) One of these elements concerns the use of the S equa-

tion itself. The phases calculated by equation (10) of the

initially unphased part of the diffraction data [denoted ’ðn�1Þ
K

in equation (9b)] are not only evaluated but also reintroduced

stepwise into the S equation (9b) at each cycle:

�ðnÞH ¼
1

ð2�2H2 � "Þ

s2

�

X
K

1

K2
jEKj

obs expði’ðn�1Þ
K Þ�ðn�1Þ

H�K : ð9bÞ

The stepwise procedure has been adapted from the standard

DM practice. The calculated � set provides values for all the

phases at each step but only a small subset (in our tests about

ten new phases at each step) is accepted and introduced in

equation (9b) along with the corresponding observed moduli

as extended terms of the potential expression W
ðn�1Þ
K ¼

E
ðn�1Þ
K =K2. The identification of the accepted subset of phases

is made according to the usual criteria for phase selection.
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Similar to the first part of the algorithm, the initially given

phases are not refined. Thus, in the second part, new extended

potential terms are introduced along with the initial ones,

refining stepwise the potential in reciprocal space. This recalls

a self-consistent potential method in quantum mechanics. We

note that the calculated � set is recycled in the S equation in

two ways: (i) directly as �(n�1) values and (ii) indirectly by the

calculated ’(n�1) values through equation (10). This method

(first part followed by self-consistent potential expansion)

along with a starting multisolution procedure has been used

for the ab initio determination of the crystal structure of

TCNQ with 41 non-H atoms (Bethanis et al., 2002). Never-

theless, tests with larger structures showed that further

developments are necessary for a routine application in crystal

structure determination.

(II) Such a new development is the other element of the

second part of the algorithm which is achieved by introducing

an additional criterion stemming from comparison between

|E|obs and |E|calc obtained from equation (10): the minimization

of the R factor [equation (12)] by varying the � variables:

R ¼

P
H jE

obs
H � Ecalc

H jP
H jE

obs
H j

¼

P
H jE

obs
H � kH

P
K �K��K�HjP

H jE
obs
H j

:

ð12Þ

A similar least-squares (LS) procedure has been introduced

by Sayre (1972) and Sayre & Toupin (1975) within the DM

context. A main advantage of this element is that the algor-

ithm uses from the start of part 2 the whole set of observed

moduli |E|obs whereas only the |E|obs of the initial phased set

of reflections have been used in the first part. The values of

�K minimizing the R expression (12) are substituted in

equation (9b).

3.3. Summary

The general algorithm, after capitalizing on the initially

given information by the iterative procedure described in the

first part, activates the second part which calculates a � set

fulfilling both conditions: satisfying the S equation (9b) with

self-consistent potential and minimizing the R factor [equation

(12)]. At the end of the iterative calculations, the inverse FT of

�H will provide the usual wavefunction  (r) in direct space

and therefore, the ‘electron density’ [equation (2)].1

4. Convergence study

First we note that in the usual quantum-mechanical problems

the set of atomic coordinates is the a priori information

introduced in the S equation [right-hand part of equation (5)

in direct space]. In reciprocal space, this set is equivalent to an

infinite set of structure factors [right-hand part of equation (5)

in reciprocal space]. In this paper, we wish to examine the

‘quality’ of the wavefunction �H considering gradually

decreasing structure-factor initial information expressed as

initial phase information per atom. The information initially

given within the crystallographic context is in fact a function of

the structure size which can be expressed in terms of Nasym, the

number of unique non-H atoms in the asymmetric unit. Thus

we distinguish three cases:

(a) a ‘quasi-infinite’ set of EH phases is considered a set of

the order of 10Nasym phases. Clearly, this set of phases is able

to reveal all the atomic positions of the crystal structure;

(b) a limited set of phases (Nasym phases);

(c) a very small subset of phases (for instance 6 to 10; this is

considered as a ‘close to ab initio’ case).

The convergence for all cases is evaluated with basic criteria

pertaining to the following three questions.

(I) Does the iterative calculation of the wavefunction �H

converge?

For this, we evaluate the ‘sequential convergence’ of the

calculated reciprocal wavefunction �H with the following.

(i) The mean phase error between the �H values calculated

in the (n � 1)th and nth iteration cycle:

�-MPEsequential ¼
P
H

j!ðnÞH � !
ðn�1Þ
H j=M; ð13Þ

where !ðnÞH ¼ phase of �ðnÞH and M is the number of �’s.
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Table 1
Results of tests of the Schrödinger-equation algorithm.

Nasym: No. of non-H atoms in the asymmetric unit. Mrefl: No. of
independent observed reflections with |E| > 1.2. MPEseq: MPEsequential.
MPEdif: MPEdifferential.

(a) Crystal structure

Nasym Space group
Data
resolution (Å) Mrefl

Sigi 11 P�11 0.81 292
Tcnq 41 P1 0.80 632
Pn1a 110 P21 1.10 802

(b) Results

No. of
initial
phases

No. of
iteration
cycles

�-MPEseq

(�)
�-MPEdif

(�)

E-MPE
for Mrefl

(�)

Case (a)
Sigi 292 11 0.15 1.0 0.4
Tcnq 632 12 0.06 1.0 19
Pn1a 802 17 0.08 1.0 35/6†

Case (b)
Sigi 11 126 0.006 1.0 16
Tcnq 41 21 0.23 1.1 41/22†
Pn1a 110 56 0.01 1.0 36/28†

Case (c)
Sigi 6 166 0.008 1.7 34/3†
Tcnq 8 114 0.36 1.08 61/26†
Pn1a 10 35 0.7 0.9 77/28†

† The second part of the algorithm was also activated.

1 Illustrative schemes for the first and second parts of the algorithm, additional
figures for the variation of all indices in all cases and for all structures,
diagrams showing the convergence for the Tcnq structure with decreasing
given information, and data for the unpublished Tcnq structure have been
deposited with the IUCr. These are available from the IUCr electronic
archives (Reference: AU5063). Services for accessing these data are described
at the back of the journal.



(ii) The R factor for the moduli (Rmoduli) of the �H values

calculated in the (n � 1)th and nth iteration cycle:

�-Rmoduli sequential ¼
P
H

jj�ðnÞH j � j�
ðn�1Þ
H jj=

P
H

j�ðn�1Þ
H j: ð14Þ

(II) Does the calculated wavefunction �H converge to a

unique set of �H values independently of the initial random set

of �H?

Here, we evaluate the ‘differential convergence’ between

�H sets originating from two different seeds in the MS

random-number-generator subroutine with the following

indices:

�-MPEdifferential ¼
P
H

j!ðnÞiseed1
H � !ðnÞiseed2

H j=M ð15Þ

�-Rmoduli differential ¼
P
H

jj�ðnÞiseed1
H j � j�ðnÞiseed2

H jj=
P
H

j�ðnÞiseed1
H j;

ð16Þ

where �(n)seed1 and �(n)seed2 are, respectively, the values of the

� set calculated in the nth iteration cycle and initially gener-

ated from number seed1 = 123456 and seed2 = 427925 in the

MS random-number-generator subroutine. Similar calcula-

tions have also been made with other seed numbers not given

here yielding similar results.

(III) Is the calculated �H set a good approximation of a

wavefunction able to produce (within certain error) the correct

values of the phases of the structure factors through equation
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Figure 1
Convergence of �-MPEsequential in case (a) for the three structures.

Figure 2
Convergence of �-MPEdifferential in case (a) for the three structures.

Figure 4
Convergence of �-MPEdifferential in case (c) for the three structures. The
index evaluates the convergence between two initially random � sets
throughout the iterative procedure described in the first part of the
algorithm.

Figure 3
Convergence of �-MPEsequential in case (c) for the three structures. The
index evaluates the stability of the � set when only the first part of the
algorithm is activated.



(10) and thus determine the atomic positions of the crystal

structure?

We evaluate thus the convergence of the calculated towards

the correct set of phases using the corresponding E-MPE

between calculated and correct E’s:

E-MPE ¼
P
H

j’calc
H � ’

correct
H j=ðNo. of calculated phasesÞ;

ð17Þ

where ’calc is the phase calculated from equation (10) and

’correct is the phase obtained from the known coordinates.

5. Results

We examine questions of convergence for three cases of

different initially given information (a), (b) and (c) and three

known structures with different numbers of atoms in the

asymmetric unit and with different crystallographic symme-

tries (Table 1). The data of the two structures with code name

Sigi and Pn1a have been obtained from the list of the

SHELX97 manual (Sheldrick, 1993, 2008). The data for the

structure called Tcnq [4,5-bis(methylthio)-1,3-dithiol-2-ylium

bis(TCNQ), C29H15N8S4] were kindly provided by

D. Mentzafos (Bethanis et al., 2002).2

In all cases, we use observed structure factors with |E| > 1.2.

The � set corresponds to a P1 structure respecting the rule of

Friedel reflections. Initial values of phases are arbitrarily

assigned to the whole � set using the MS random-number-

generation subroutine. The initial values of moduli j�ð0ÞH j are

arbitrarily assigned as 1. In all cases, the initially given phase

information is first transferred in the first part of the algorithm

from the set of the known EH’s and capitalized into the whole

set of the �H via iterations of the S equation (9). The indices

given in equations (13)–(16) help in evaluating the conver-

gence of the algorithm. The overall quality of the information

transfer is evaluated through the values of E-MPE, equation

(17). In order to simplify the presentation, we display in Table

1 and in Figs. 1–6 a selection of the above results. Additional

figures for the variation of all indices in all cases and for all

structures are deposited as supplementary material.3 In Table

1, we give only the values of �-MPE and E-MPE. �-Rmoduli

factors are consistent with the corresponding �-MPE’s.

The results allow one to evaluate the following.

(i) The ‘stability’ of the final � set: the values of �(n�1)

introduced in the right-hand member of equation (9) yield

sensibly the same values of �(n). This is best illustrated in case

(a).

(ii) The ‘ability’ of the final � set to produce through

equations (10) and (11) calculated phases close to the correct

ones for the unphased part of observed reflections. This is

illustrated in cases (b) and (c).

Concerning the ‘stability’, the values of the convergence

indices are very small after a reasonable number of calcula-

tions: for instance, the final �-MPEsequential is a small fraction

of a degree and the final �-MPEdifferential converges to values

of the order of a degree. The number of the corresponding

cycles varies from 11 to 166. The convergence is slower in

cases (b) and (c) where the initial phase information is much

poorer than that of case (a). However, in all cases and all

structures, the �-MPEdifferential is small and this corroborates

the outstanding fact that the final set of phases is nearly

independent of the randomly assigned set of initial reciprocal

wavefunction �H. In Figs. 1–4, the smooth decreasing of the

�-MPE sequential and differential indices is shown for cases

(a) and (c). Similar figures have been obtained for case (b).
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Figure 6
E-MPE in case (c) for the three structures. Until the 50th iteration cycle
[only the 50 iteration cycles of the first part are shown instead 166 or 114
(see Table 1) because E-MPE has already been satisfactorily stabilized at
this number of cycles], only the first part of the algorithm is activated. The
high E-MPE values are dramatically improved after the 50th cycle by
activating also the second part (S equation coupled with R minimization).

Figure 5
E-MPE in case (b) for the three structures. The second part of the
algorithm (S equation coupled with R minimization) has been activated
after the 50th iteration cycle for the structures with high (>30�) E-MPE
values. The E-MPE values are then improved dramatically after just one
iteration cycle.

2 Unit-cell parameters, atomic coordinates and experimental |E|obs have been
deposited as supplementary material. See deposition footnote.
3 See deposition footnote.



Concerning the ‘ability’ of the final � set to produce correct

phases ’H, crystallographic experience has shown that sets of

phases with E-MPE say less than 30� are sufficient to reveal

most if not all of the atomic positions. The E-MPE given in

Table 1 corresponds to the full set of observed reflections

(Mrefl). In the cases/structures where the E-MPE after the first

part of the algorithm (S equation alone) is larger than 30�, the

activation of the second part where the R-factor minimization

is coupled with the S-equation fulfilment with self-consistent

potential (x3) significantly improves the results. The latter fact

is illustrated by using the abbreviation, for instance 77/28, to

distinguish the results respectively without and with the

second part of the general algorithm. The footnote symbol in

Table 1 identifies the occurrence of such improvement.

In case (a), the algorithm is only meant to reproduce via the

wavefunction �H the whole set of known phases whereas, in

cases (b) and (c), the algorithm also produces phases for the

unphased part of the whole set of reflections.

In case (b), clearly this unphased part covers the largest

fraction of the whole set. For instance, for structure Tcnq this

unphased part comprises 632 � 41 = 591 reflections. In other

words, the algorithm achieves a phase extension from 41 to

632 phases. As shown in Fig. 5 for the structures Tcnq and

Pn1a after 50 iteration cycles of the first part of the algorithm,

the E-MPE has been stabilized to a value larger than 30� and

the second part should also be activated. This activation is

sufficient to lead to satisfactory E-MPE values (<30�) after

just one iteration cycle.

In case (c), the initial data are extremely poor; in particular,

for the P21 structure only 10 out of the selected 802 reflections

have known phases. We note the extreme ‘dilution’ of the

initial structure-factor information (10 reflections) into the

large initially random � set (1600 �’s). As one could expect,

the finally stabilized � set after the calculations of the first

part alone produces through equation (10) large values of

E-MPE (34, 61, 77�) for the whole set of reflections Mrefl.

However, having used this � set as the initial input to the

second part of the algorithm described in x3, the results are

then dramatically improved as shown in Table 1. In Fig. 6 is

shown the variation of the E-MPE by using initially (until the

50th iteration cycle) only the first part of the algorithm and

then by activating also the second part (after the 50th cycle).

The final E-MPE values for the whole set of reflections Mrefl

are respectively 3, 26 and 28�. In Figs. 7, 8 and 9 are the

electron-density maps drawn by using the final calculated

phases which show that all the atomic positions are revealed

for all crystal structures and thus the general algorithm is able

to solve the close to ab initio problem. The ab initio solution

can be achieved with the additional use of multisolution

algorithms as has been shown by Bethanis et al. (2002).

5.1. Enhanced criterion of correctness from known space-
group symmetry

A particular aspect of the correctness of the calculated

phases is the fulfilment of the phase rules linking symmetry-
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Figure 9
Final e.d. map for the Pn1a structure (Nasym = 110). Number of initially
known phases = 10, number of calculated phases = 802 with a final
E-MPE = 28�.

Figure 8
Final e.d. map for the Tcnq structure (Nasym = 41). Number of initially
known phases = 8, number of calculated phases = 632 with a final E-MPE
= 26�.

Figure 7
Final electron-density (e.d.) map for the Sigi structure (Nasym = 11).
Number of initially known phases = 6, number of calculated phases = 292
with a final E-MPE = 3�.



related reflections, whereas the initial � set lacks symmetry

information (Tzamalis et al., 2003). For instance, for the case

(b) of the Pn1a structure, space group P21, reflections hkl and
�hhk�ll present a departure from ideal symmetry evaluated by the

expression

Sym E MPE ¼
P
hkl

j’hkl � ’ �hhk�ll
	 k�j=ðNo. of calculated phasesÞ:

ð18Þ

By activating only the first part of the general algorithm, we

find at the end of the 40th cycle Sym_E_MPE = 1.6�. It is

remarkable that this value is considerably lower than the value

of E-MPE = 36� [equation (17)]. The phases of the � set

present also a very low departure from ideal symmetry with a

value of symmetry mean phase error Sym_�_MPE = 1.3�,

where

Sym � MPE ¼
P
hkl

j!hkl � ! �hhk�ll
	 k�j=M: ð19Þ

The convergence of these two indices is shown in Fig. 10. The

origin of this symmetry fulfilment resides in the initially given

E values respecting the symmetry rules known in modulus and

phase. The above low figures witness the successful transfer of

information from E’s to �’s performed by the S equation

alone.

A particular case of symmetry is the space group P�11 where

all structure factors are real numbers, i.e. the phases are 0 or �.

Here also in cases (a) and (b) it is remarkable that an initial set

of �’s with random phases introduced only in the first part of

the algorithm finally leads to a set of phases ’H close to 0 or �.

However, in case (c) of the centrosymmetric structure Sigi, the

discrete character of the correct phases (0 or �) may cause a

computational problem which is overcome by a large number

of iterations (166).

6. Discussion

The proposed algorithm is based upon the Schrödinger

equation in reciprocal space [equation (7)]. The connection

with crystallography appears already in this equation where

the EK are the (theoretical) normalized structure factors for

point atoms. This equation would be exactly fulfilled for an

infinite number of terms in the second member. A first ques-

tion arises about the degree of fulfilment for a finite number of

terms with experimental Eobs in equation (9), a topic of

fundamental interest which has not been studied to our

knowledge. We have designed an algorithm to search for a

valid approximation to the wavefunction �H which in turn

would allow the calculation of unknown (or refined) structure

factors via equations (10) and (11). A prerequisite for practical

use is the convergence of this algorithm in different cases of a

priori information and different sizes of crystal structures.

We come now to the three questions issued in x4.

(I) The wavefunction �H obtained by the iterative calcu-

lation using solely the S equation in the first part of the

algorithm converges in all examined cases and for all exam-

ined structures to certain values.

(II) The final � values obtained as described in (I) are

sensibly independent of the initial random set.

(III) For sufficient initial phase information, these values

lead to a structure close to the correct one. When the initial

information is not sufficient (in particular in the 110 atom

structure), these values are used as input for a more involved

method (second part) where the moduli of the calculated

structure factors are constrained to be close to the experi-

mental ones by a least-squares calculation. This innovating

constraint over the Bethanis et al. (2002) publication is effi-

cient, leading to an electron density where all atoms appear.

However, we have found that the least-square procedure

alone (without using the S equation) never leads to a mean-

ingful set of unknown phases.

In conclusion, the use of the Schrödinger-equation method

by itself is not sufficient to solve the structure in the close to ab

initio case (c) for the 110 atom structure unless a least-squares

step is used. Thus, the least-squares part is required in addition

to the ‘strength’ of the S equation for difficult problems. The

present results are encouraging for an application of the

algorithm as a phase-extension procedure in protein struc-

tures, and ultimately to ab initio determination. The initial set

of phases required to achieve an ab initio determination for

small molecules can be obtained by multisolution methods like

the magic integer methods (White & Woolfson, 1975; Main,

1977). For protein ab initio determination, a combination of

real- and reciprocal-space techniques could provide the initial

information like the shake-and-bake method (DeTitta et al.,

1994; Weeks et al., 1994; Hauptman, 1995), the peaklist-

optimization procedure (Sheldrick & Gould, 1995) and the

SIR99 procedure (Burla et al., 1999). The new elements of the

present paper are likely to allow determination of larger

structures after optimization of the present algorithm. On the

other hand, the least-squares concept can be extended to other

pertinent functions and other constraints can be developed

within the present algorithm such as that of solvent flattening
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Figure 10
Convergence of indices showing the progressive re-establishment of the
initially ignored P21 symmetry in case (b) for the Pn1a structure.



in protein structures or molecular envelopes (Zhang et al.,

2006). Note also that the sensitivity of lengthy iteration

procedures to the rounding errors calls an increased attention

to the convergence problems.

As a final remark, in a previous publication (Bethanis et al.,

2002), we have pointed out that ‘the Schrödinger equation is a

postulate of quantum mechanics’. The S-equation algorithm is

conceptually different from any DM and thus it provides a

new approach in crystallographic problems. The recent

publication of a related algorithm based upon the Dirac

equation (Karabiyik, 2007) leads to a formula close to our

equation (7) and corroborates the physical background of this

approach.
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